Pavement Life-Cycle Assessment Symposium 2017 (PLCA) Champaign, IL | April 12-13, 2017

Development and Application of LCA Tool for Cool Pavement

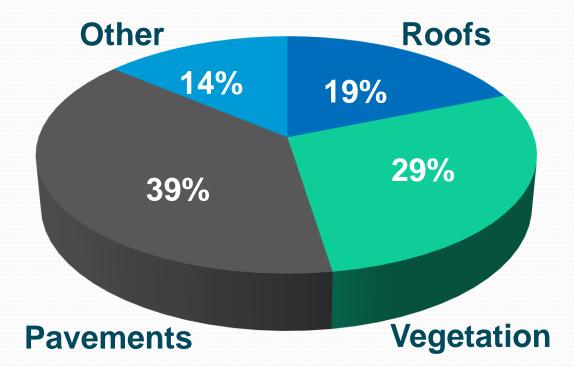
Hui Li, UC Davis & Tongji University John Harvey, UC Davis Arash Saboori, UC Davis Ali A Butt , UC Davis

April 12th, 2017

- Background & Objective
- Cool Pavement Life Cycle Assessment Tool
- Case Studies for Cool Pavement LCA
- Conclusions

Cool Pavement Basics

- CA AB296 in 2012, Cool Pavement Research and Implementation Act, to mitigate urban heat island (UHI)
- Albedo is solar radiation reflectivity
 - o is completely absorptive
 - 1 is completely reflective
- Typical albedos
 - Asphalt and slurries: 0.05 to 0.1 and lighten to about 0.15
 - Chip seals depend on aggregate reflectivity 0.05 to 0.20
 - Concrete: 0.25 to 0.35 and darkens to about 0.20


Low albedo, high temperature.

Pavements are an important part of the urban environment

Albedo = reflectivity

Question: what is net impact of changing surface materials to change albedo?

Urban fabric above tree canopy in Sacramento, California


Objectives

- Develop model and tool for estimating the 50-year life cycle environmental effects of various pavement treatment scenarios of modifying pavement albedo
- Case studies

The scope of the pLCA tool includes the non-use and

use phases of the pavement life cycle

- Pavement materials and construction models
- State-wide WRF climate change model response to albedo
- Building energy modeling

What are the life cycle benefits/penalties from the adoption of cool pavements? examples

• Apply the pavement life cycle assessment (pLCA) tool to evaluate business-as-usual and alternative pavements

Routine maintenance

Rehabilitation (Regular & Long-life)

Δ = (alternative pavement) – (business-as-usual pavement)

Methodology

- Development of the pavement strategy guidance tool involved,
 - Assessment of local government pavement management practices in California
 - Assessment of pavement albedo
 - Calculation of life-cycle inventories for pavement materials and energy sources in California
 - Assessment of building stock in California
 - Urban climate modeling in California
 - Ozone temperature sensitivities in California
 - Building energy modeling in California
 - Tool coding
 - Tool input and output quality assurance

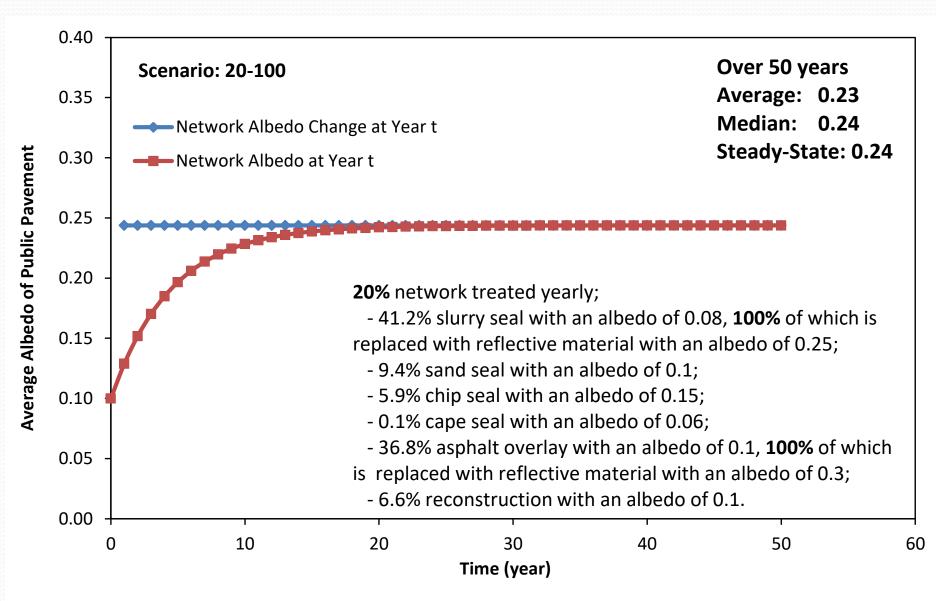
Local Government Pavement

Management Practice

	Portion of Each Treatment Used in Total Network Treated						
	А.	B.	C.	D.	Е.	F.	
City	Slurry Seal	Sand Seal	Chip Seal	Cape Seal	Asphalt Overlay	Reconstruction (AC, RAC, FDR, CIR)	
City of Bakersfield	-	75%	-	-	13%	12%	
City of Berkeley	31%	-	-	-	41%	28%	
City of Chula Vista	28.3%	-	46.4%	0.5%	21.8%	3%	
City of Fresno ^a	-	-	-	-	100%	-	
City of Los Angeles	60.7%	-	-		35.4%	3.9%	
City of Richmond	47.1%	-	0.7%	0.5%	45.9%	5.9%	
City of Sacramento	82.4%	-	-	-	17.6%	-	
City of San Jose	80%	-	-	-	20%	-	
Average	41.2%	9.4%	5.9%	<i>0.1%</i>	<u>36.8%</u>	6.6%	

^a 40 centerline miles asphalt overlay up to 2009, then 20 cen

^b use multiplier 2.2 to convert centerline miles to lane miles.


Pavement Albedo

	Albedo (Typical)		
Material Type	Range	Avg.	
Asphalt Concrete or Overlay	0.05 - 0.15	0.1	
Asphalt Concrete or Overlay with Reflective Coating	0.2 - 0.3	0.2	
Chip Seal	0.1 - 0.24	0.15	
Slurry Seal	0.07 - 0.1	0.08	
Cape Seal	0.05 - 0.15	0.06	
Fog Seal	0.04 - 0.07	0.06	
Sand Seal	0.07 - 0.1	0.08	
Portland Cement Concrete	0.15 - 0.35	0.25	
Conventional Interlocking Concrete Pavement	0.25 - 0.3	0.26	
Permeable Asphalt Pavement	0.08 - 0.12	0.1	
Permeable Concrete Pavement	0.18 - 0.28	0.25	
Permeable Interlocking Concrete Pavement	0.25 - 0.3	0.26	
Gravel	0.12 - 0.22	0.18	
Soil	0.21 - 0.23	0.22	
Grass	0.18 - 0.20	0.19	

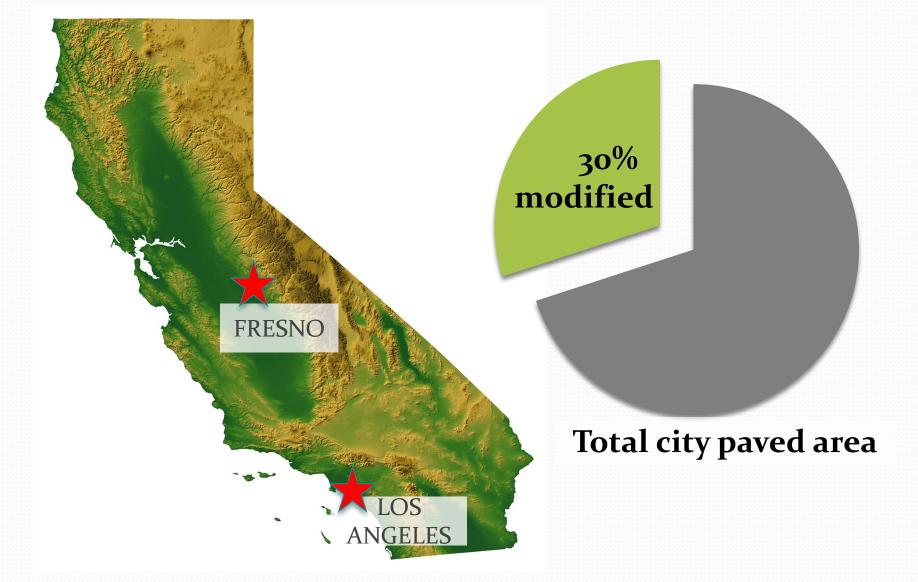
Albedometer with dual-pyranometer

20% treatment/year, 100% replacement

Summary LCI and LCIA of treatments (ex.) non-use stages (based on 2012 electricity grid mix, functional unit of 1 ln-km)

Item	Life Cycle Phase	GWP [kg CO2e]	POCP [kg O3e]	PM2.5 [kg]	PED Total* [MJ]	PED (non- ren)** [MJ]	Feedstock Energy [MJ]
	Material	5.03E+03	8.24E+02	4.03E+00	1.05E+05	1.00E+05	3.75E+05
Como Sool	Transport	6.53E+02	1.04E+02	2.09E-01	9.35E+03	9.35E+03	0.00E+00
Cape Seal	Construction	1.49E+03	6.56E+02	1.17E+00	2.05E+04	2.05E+04	0.00E+00
	Total	7.17E+03	1.58E+03	5.40E+00	1.35E+05	1.30E+05	3.75E+05
	Material	3.64E+03	5.97E+02	2.91E+00	7.60E+04	7.23E+04	2.69E+05
Chin Coul	Transport	4.80E+02	7.65E+01	1.53E-01	6.87E+03	6.87E+03	0.00E+00
Chip Seal	Construction	8.12E+02	3.59E+02	6.37E-01	1.12E+04	1.12E+04	0.00E+00
	Total	4.93E+03	1.03E+03	3.70E+00	9.41E+04	9.04E+04	2.69E+05
	Material	1.06E+03	1.72E+02	8.73E-01	2.24E+04	2.14E+04	8.42E+04
Fog Soal	Transport	1.31E+01	2.08E+00	4.17E-03	1.87E+02	1.87E+02	0.00E+00
Fog Seal	Construction	2.14E+02	9.46E+01	1.68E-01	2.95E+03	2.95E+03	0.00E+00
	Total	1.29E+03	2.69E+02	1.05E+00	2.56E+04	2.46E+04	8.42E+04
	Material	1.04E+04	4.46E+02	2.75E+00	2.52E+05	2.46E+05	n/a
Reflective Coating	Transport	1.38E+02	2.21E+01	4.43E-02	1.98E+03	1.98E+03	n/a
-BPA	Construction	2.01E+02	8.88E+01	1.58E-01	2.77E+03	2.77E+03	n/a
	Total	1.07E+04	5.57E+02	2.95E+00	2.57E+05	2.51E+05	n/a
Deflection Cost	Material	1.22E+04	5.77E+02	1.42E+01	2.55E+05	2.43E+05	n/a
Reflective Coating	Transport	1.38E+02	2.21E+01	4.43E-02	1.98E+03	1.98E+03	n/a
- Polyester	Construction	2.01E+02	8.88E+01	1.58E-01	2.77E+03	2.77E+03	n/a
Styrene	Total	1.25E+04	6.88E+02	1.44E+01	2.59E+05	2.47E+05	n/a

Pavement life cycle assessment (pLCA) tool

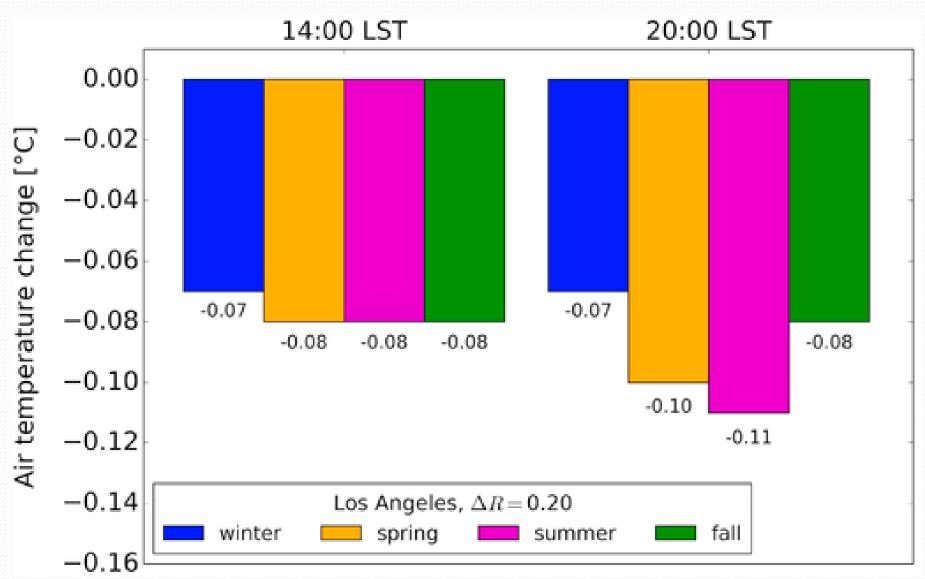


Provides comparison between treatments User inputs: City Percent of city repaved Treatment lives, thicknesses, albedos

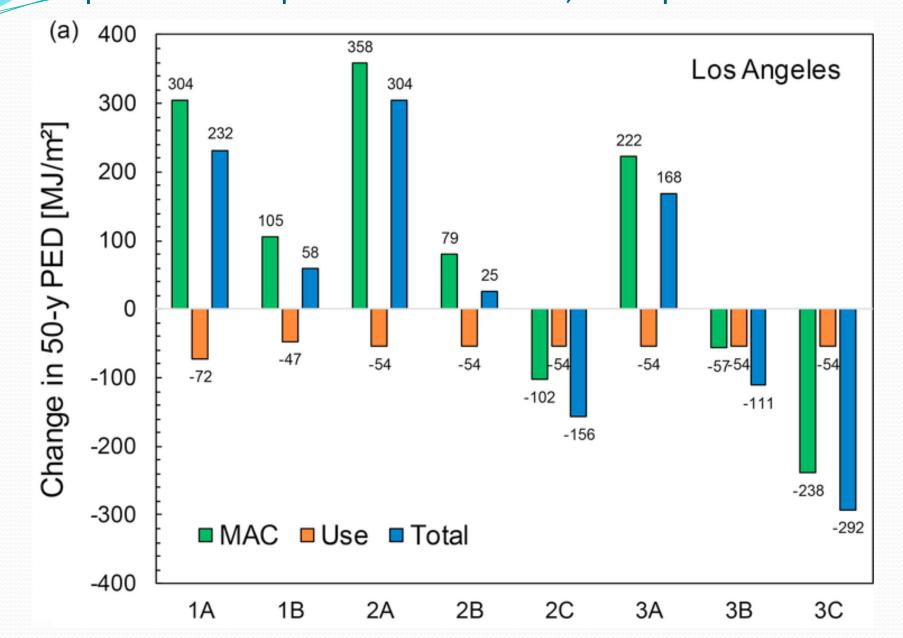
Main Assumptions

- Pavements change albedo instantly
- Pavements maintain albedo through lifecycle
- Same pavement replacement at end of life
- The tool does not track the spatial distribution of environmental effects
- The climate modeling methodology focused on city-wide air temperature changes
- The building prototypes used for the building energy simulations followed California's 2008 Title 24 building energy efficiency standards
- The environmental impacts of electrical energy use are based on the California 2020 renewable energy portfolio
- Time-adjusted warming potentials are not considered

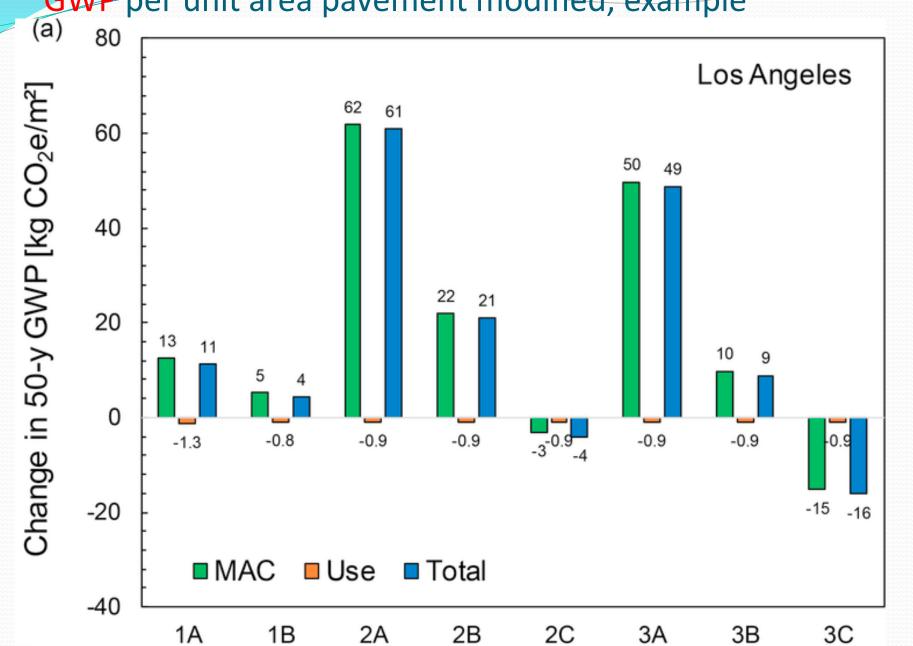
The case studies evaluate cool pavement campaigns in two California cities

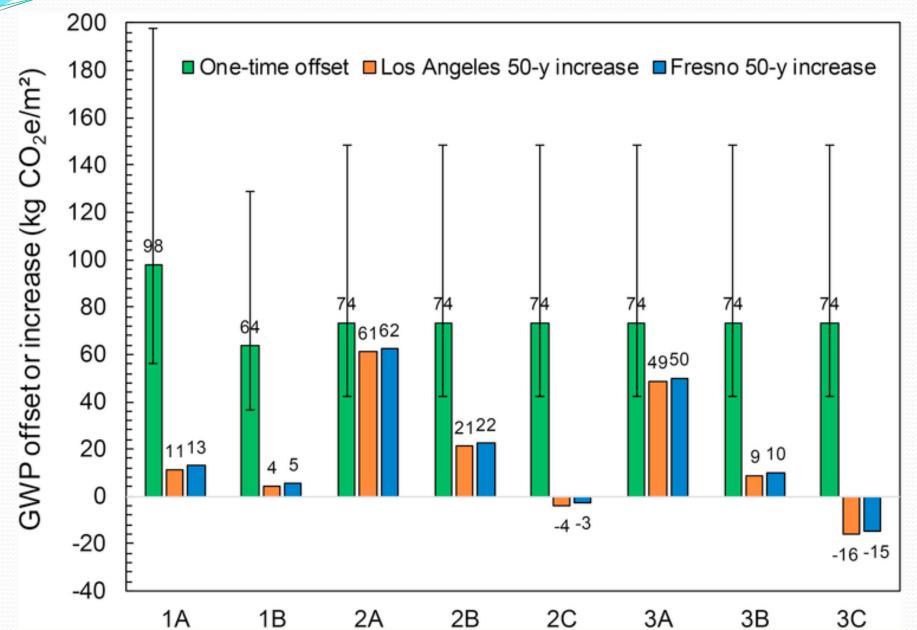

Specifications of the three pavement case studies

C	ase study	Typical treatment	Less-typical treatment	Aged albedo	Albedo increase	Service life (y)	Thickn ess per install ation (cm)	Thickne ss installe d over 50 y (cm)
1	. Routine	Slurry seal	-	0.10	-	7	-	-
1.	mainten ance	-	1A: Styrene acrylate reflective coating	0.30	0.20	5	-	-
	anoc	-	1B: Chip seal	0.23	0.13	7	-	-
		Mill-and-fill AC	-	0.10	-	10	6	30
2		-	2A: BCOA (no SCM)	0.25	0.15	20	10	25
	itation	-	2B: BCOA (low SCM)	0.25	0.15	20	10	25
		-	2C: BCOA (high SCM)	0.25	0.15	20	10	25
3.	Long-	Mill-and-fill AC	-	0.10	-	20	15	37.5
	life	-	3A: BCOA (no SCM)	0.25	0.15	30	15	25
	rehabili tation	-	3B: BCOA (low SCM)	0.25	0.15	30	15	25
	tation	-	3C: BCOA (high SCM)	0.25	0.15	30	15	25


Composition of each pavement treatment considered in this study

Treatment	Composition
Slurry seal	6.5 kg crushed fine aggregate and 0.68 kg residual asphalt per m ² pavement
Styrene acrylate reflective coating	60% unsaturated polyester resin, 24% styrene, 8% titanium dioxide, 4% silicon dioxide, 1% iron oxide, 0.5% polysiloxane, 0.5% ethylene bis(steramide), and 2% cobalt napthenate by mass, applied at 1 kg per m ² pavement
Chip seal	1.8 L bitumen emulsion and 19 kg aggregate per m ² pavement
Mill-and-fill AC	38% coarse aggregate, 57% fine aggregate, 5% dust, 4% asphalt binder, and 15% reclaimed asphalt pavement by mass
BCOA (no SCM)	1071 kg coarse aggregate, 598 kg fine aggregate, 448 kg cement, 1.8 kg polypropylene fibers, 1.9 kg water reducer (Daracern 65 at 390 mL per 100 kg of cement), 1.6 kg retarder (Daratard 17 at 325 mL per 100 kg of cement), 0.6 kg air entraining admixture (Daravair 1400 at 120 mL per 100 kg of cement), and 161 kg water per m ³ wet concrete
BCOA (low SCM)	1085 kg coarse aggregate, 764 kg fine aggregate, 267 kg cement, 71 kg fly ash, 1.8 kg polypropylene fibers, and 145 kg water per m ³ wet concrete
BCOA (high SCM)	1038 kg coarse aggregate, 817 kg fine aggregate, 139 kg cement, 56 kg slag, 84 kg of fly ash, and 173 kg water per m ³ wet concrete


Seasonal average city-wide 2 m height air temperature changes upon raising by 0.20 the albedo of 30% of pavement in the city, example


MAC-stage, use-stage, and total (MAC + use) changes in **PED** per unit area pavement modified, example

MAC-stage, use-stage, and total (MAC + use) changes in GWP per unit area pavement modified, example

Location-independent one-time GWP offset induced by global cooling compared to 50 y life cycle total GWP increases

Summary & Conclusions

- The pavement life cycle assessment method and decision support tool was developed, with which decision-makers can evaluate the life cycle impacts of various pavements from changing albedo, including both non-use phase and use-phase effects.
- Currently, most cities in California annually maintain a small portion of pavements with low-albedo, like slurry seals that traditionally have albedo values in the range of 0.07 to 0.10.
- Preliminary scenario analysis with the tool indicated that the energy and environmental effects of cool pavements from non-use phase (materials) are greater than those from use phase.
- Pavement technologies are needed that use less energy and are carbon intensive to produce, as well as cost-effective.

Acknowledgement

Lawrence Berkeley National Laboratory (LBNL)

Ronnen Levinson Haley Gilbert Ling Jin Benjamin Mandel (former staff) Dev Millstein Pablo Rosado

University of California Pavement Research Center (UCPRC)

John Harvey Alissa Kendall Hui Li Arash Saboori Jon Lea Ali Butt

Funding provided by California Air Resources Board and California Department of Transportation

University of Southern California (USC) George Ban-Weiss Arash Mohegh

thinkstep, Inc. (formerly PE International) Nicholas Santero (former staff)

John Harvey, <u>jtharvey@ucdavis.edu</u> Hui Li, <u>hili@ucdavis.edu</u> & <u>hli@tongji.edu.cn</u>